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Abstract. We show that in time-reversal invariant systems, a pair of periodic orbits related by
time-reversal symmetry have the same Maslov index. Previously this result had been implicitly
assumed in the semiclassical derivation of the Gaussian orthogonal ensemble spectral form
factor.

One of the central results of quantum chaology is that the energy levels of a (spinless)
classically chaotic quantum system, invariant under time-reversal symmetry, have the same
statistics as the eigenvalues of the Gaussian orthogonal ensemble (GOE) of random matrices
(Bohigaset al 1984, Berry 1987, Bohigas 1991, Mehta 1991). The purpose of this note is
first to point out that the semiclassical derivation of GOE statistics for such systems depends
on pairs of time-reversal-related periodic orbits having the same Maslov index (previously
this passed as an unnoticed assumption in the argument), and then to give a demonstration
of this result.

Throughout we consider a system ofN degrees of freedom, defined on Cartesian
configuration spaceRN , whose classical dynamics is chaotic and time-reversal invariant.
We make no additional assumptions about the form of the Hamiltonian. Let us consider the
spectral form factor

K(T ) = 1

d̄

∫ ∞
−∞

exp(ixT /h̄)〈d(E + x/2)d(E − x/2)〉 dx − 2πh̄d̄δ(T ) (1)

the Fourier transform of the two-point correlation function of the density of statesd(E) =∑
n δ(E−En). In (1), 〈. . .〉 denotes an energy average,d̄(E) = 〈d(E)〉 is the mean density

of states, and the normalization is chosen so thatK(T ) → 1 as T → ∞. Following
Berry (1985), the semicalssical evaluation ofK(T ) proceeds by substituting ford(E) the
Gutzwiller trace formula (Gutzwiller 1990),

d(E) ≈ d̄(E)+ 1

πh̄
Re
∑
j

Aj exp(iSj/h̄− iµjπ/2) (2)

where the sum is taken over periodic orbits with energyE (assumed to be isolated and
unstable).Sj (E) is the periodic orbit action,Aj = Tj/| det(Mj − I)|1/2, Tj is the period,
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Mj (E) is the Poincaŕe map linearized about the orbit,I is the identity matrix andµj is the
Maslov index. From (1) and (2),

K(T ) = 1

TH

∑
j,k

〈
AjAk exp(i{Sj − Sk}/h̄− i{µj − µk}π/2)δ

(
T − Tj + Tk

2

)〉
E

(3)

whereTH = 2πh̄d̄ is the Heisenberg time.
Next, we restrict the sum in (3) to the diagonal(Sj = Sk) terms. These terms dominate

the expression forK(T ) for T � TH , and as shown by Bogomolny and Keating (1996),
the contributions from the off-diagonal terms, which become important for larger values
of T , can be evaluated to leading order in terms of the diagonal ones. For systems with
time-reversal symmetry, there are generically two kinds of diagonal terms. In the first, the
labels j and k refer to the same orbit, and soAj = Ak, Tj = Tk andµj = µk. In the
second, the orbit labelledk is the time-reverse of the orbit labelledj ; we denote this by
writing k = ̄ . ThenAj = Ā andTj = T̄ . The diagonal contribution may thus be written
as

K(diag)(T ) = 1

TH

∑
j

〈A2
j (1+ exp(−i(µj − µ̄ )π/2))δ(T − Tj )〉E. (4)

If we takeū = µj , the GOE form factorKGOE(T ) ≈ 2T/TH for T � TH is then recovered
from the Hannay–Ozorio de Almeida (1984) sum rule,∑

j

〈A2
j δ(T − Tj )〉E ≈ T . (5)

In previous discussions, the fact that a periodic orbit and its time reverse have the
same Maslov index appears to have been implicitly assumed. Here we give an explicit
demonstration. This will be based on the following topological characterization of the trace
formula Maslov index (Creaghet al 1990, Robbins 1991).

Associated to the unstable periodic orbitZj (t) are itsN -dimensional stable and unstable
manifoldsWs,u

j , consisting of points which approach the orbit asymptotically in forward and
backward time respectively. TheN -dimensional planes tangent to the stable and unstable
manifolds atZj (t), which we denote byλsj (t) andλuj (t), are Lagrangian planes; that is, if
δz1 = (ξ1,η1) and δz2 = (ξ2,η2) are two vectors inλsj (t) for example (here theξ’s and
η’s denote theq andp components of theδz’s), thenξ1 · η2 = ξ2 · η1. Therefore, over a
periodT , λsj (t) andλuj (t) describe closed curves in the space ofN -dimensional Lagrangian
planes. The space of Lagrangian planes3(N) has nontrivial topology; in particular, closed
curves in3(N) can be classified by an integer winding number. A calculation shows that
the winding numbers wnλsj (t) and wnλuj (t) (which turn out to be the same) are just the
Maslov indicesµj which appear in the trace formula (2), so that

µj = wnλsj (t) = wnλuj (t). (6)

We shall use the following explicit formula for the winding number (Robbins 1992). Let
the vectors(ξ1,η1)(t), . . . , (ξN,ηN)(t) comprise a basis forλsj (t). For present purposes
it is convenient to stipulate that these vectors be periodic themselves (although in general
they need not be). Consider the complexN -dimensional matrixL, where

Lαβ(t) = ξαβ(t)+ iηαβ(t) (7)

(i.e. the matrix whose rows are the vectorsξα(t) + iηα(t)). The phase of the determinant
detL(t) is periodic, and wnλsj (t) is just the number of times detL(t) encircles the origin of
the complex plane in the anticlockwise sense. Explicitly,

wnλsj (t) =
1

2π
Im
∫ T

0

d

dt
ln detL(t) dt. (8)
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Now consider a Hamiltonian invariant under time reversalz = (q,p)→ z̄ = (q,−p).
This implies that the Hamiltonian flow8t(z) satisfies

8̄t (z) = 8−t (z̄) (9)

so that if thet-origins of the unstable periodic orbitsZj (t) andZ̄ (t) are appropriately
chosen, then

Z̄ (t) = Z̄j (−t). (10)

From the definition of the stable and unstable manifolds, it is obvious that (9) also implies
thatWs,u

̄ = Wu,s
j . Therefore

λ
s,u
̄ (t) = λu,sj (−t) (11)

where, in general, the time reverseλ̄ of a Lagrangian planeλ is obtained by changing the
sign of the momentum components of the vectors inλ. From (6)–(8) and (11) we have that

µ̄ = wnλū (t) = wnλsj (−t)

= 1

2π
Im
∫ T

0

d

dt
ln detL∗(−t) dt

= − 1

2π
Im
∫ T

0

d

dt ′
ln detL∗(t ′) dt ′

= 1

2π
Im
∫ T

0

d

dt ′
ln detL(t ′) dt ′ = wnλsj (t) = µj (12)

(in the substitutiont ′ = −t we have used the periodicity ofL(t)), which gives the desired
result.

The equality of the Maslov indicesµj andµ̄ can be understood to follow from the
cancellation of two sign factors. The first is due to the change in the sense of traversal
of the time-reversed orbit (cf (10) and (11)). The second is due to the effect of time
reversal on the space of Lagrangian planes. The transformationλ 7→ λ̄ defines a continuous
map with continuous inverse (i.e. a homeomorphism) on3(N), and therefore induces an
automorphism on its fundamental group, namely the integer winding numbers. There are
just two automorphisms of the integers, namelyn 7→ n andn 7→ −n, so on general grounds
we can expect that underλ(t) 7→ λ̄(t), either all the winding numbers remain the same or
they all change sign. The above calculation shows it is the second alternative which holds.

The result generalizes to anticanonical symmetries (Robnik and Berry 1986). These
are the classical analogues of antiunitary symmetries—an anticanonical transformation
9 is obtained by composing time reversal with a canonical transformation8, so that
9(z) = 8(z̄). If the Hamiltonian is invariant under9, andZj (t) andZ̄ (t) are two
unstable periodic orbits related byZ̄ (t) = 9(zj (−t)), then their Maslov indicesµj
and µ̄ are equal. This follows by noting thatλū (t) = D8(Zj (t)) · λsj (−t), where

D8 is the tangent map of8. Calculation (12) shows that wnλsj (t) = wnλsj (−t), while

wnλsj (−t) = wn{D8(Zj (t)) · λsj (−t)} follows from the invariance of the winding number
under canonical transformations (see, e.g. Littlejohn and Robbins (1987)).
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